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Abstract
Purpose of Review Successful, durable cancer treatment is
limited by drug resistance. Cancer stem cells (CSC) comprise
(typically) a rare tumor subpopulation that contributes both
intrinsic drug resistance and tumor re-initiation after therapy.
Emerging evidence suggests that drug resistance is more com-
plex than this single-cell level might suggest, and is likely
governed by dynamics encompassing the entire tumor popu-
lation. Here, we discuss the complexity of drug resistance by
focusing on efforts that interface biology (wet lab) with math-
ematical modeling and simulation (dry lab) to study and

explain the role of CSC and other cancer cells in the context
of the entire ecosystem.
Recent Findings Starting from biological evidence, we review
the current state of cancer research from the perspective of the
single-cell level, BThe cancer cell,^ its intrinsic physiopathology
and its response to drug exposure. We discuss insufficiencies of
this level of observation, in particular, the unaccounted for resis-
tance to targeted therapies, and show why it is necessary to con-
sider the entirety of the cell population, which is the only way to
capture the role of biological heterogeneity. Importantly, we re-
view how mathematical models have been implemented to elu-
cidate mechanisms of drug resistance, and efforts made to vali-
date biological experiments. Finally, we present emerging biolog-
ical models, and therapeutic strategies inspired by mathematics,
with the goal of improving the clinical management of cancer.
Summary Over the past century, we have learned that cancer
drug resistance is extraordinarily complex and requires an in-
terdisciplinary scientific effort to unmask. The network of com-
munication between and among cells within the diverse tumor
heterogeneity drives acquired and intrinsic mechanisms of re-
sistance. Harnessing biology and math to simulate, study, and
explain the mechanisms of resistance, by considering the whole
tumor population, is providing new clues to overcome it.

Keywords Drug resistance . Tumor heterogeneity .

Mathematical models . Computational biology . Evolutionary
dynamics . Chemotherapy

Introduction

Drug resistance is the underlying cause of failure when treating
disease, sharing commonality between viral pathogens, bacte-
rial infection, and cancer. Elucidating drug resistance in cancer
is particularly unique; however, since it evolves as an inherent
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disease, the mechanisms are often as individual as the person
himself. The notion that cancer drug resistance is complex is
not a new concept. Indeed, the history of our knowledge into
resistance is fraught with complication and decades of evolving
paradigms (Fig. 1). Researchers spent decades viewing drug
resistance as a consequence of single, aberrant drug-effluxing
proteins, subverting toxicity at a genetic level [1]. Other at-
tempts have been classically aimed at targeting specific muta-
tions or amplifications that increase the oncogenicity of only
small populations of cells. A classic example of this is the
ongoing challenge with, and generations of, new drugs for the
molecular targeting of BCR-ABL in chronic myelogenous leu-
kemia (CML), which are continually hampered by point muta-
tions and gene amplifications [2]. Different reasons for therapy
failure have been proposed, such as redundancy in the diseased
intracellular pathways, de novo mutated clones, and general-
ized escape from (in particular epigenetic) control mechanisms
at the whole genome level [3, 4], but another possible cause has
also been proposed that needs to consider cancer cells at the
population level. Indeed, classic paradigms are fading as re-
searchers favor new, more complex biological models that ex-
plain drug resistance.

Here, we present two unique, competing, and sometimes
synergistic perspectives to the problem of drug resistance.
These include (1) a Bbinary^ view, which embraces the notion
that resistance evolves at the single-cell level (some cells are
totally resistant to a given drug; the others are totally sensitive
to it), and as a corollary that a Bsilver bullet^ enabled by mo-
lecularly targeting single proteins (so-called druggable targets)

may underpin a cure, and (2) a Bcontinuum^ view, which high-
lights evidence that cancer is an extremely plastic, adaptable,
and heterogeneous disease as seen both at the single-cell levels
(plastic cells) due to variable epigenetic mechanisms, and at the
cell population level when one aims to describe the distribution
of a continuous phenotype, e.g., of resistance to a given drug, in
a cell population (reviewed in Marjanovic et al. and Meacham
et al.) [5, 6]. Indeed, this latter perspective suggests that cancer
is a function of the whole population, and the dynamics of the
cells within the Bcommunity^ contributes to the development
of resistance. When experimental evidence is insufficient, what
other tools do we need to employ to study cancer at the
population-based level? Below, we will show how biological
evidence is being seamlessly integrated with mathematical and
computational modeling to explain new phenomena of resis-
tance, and therapeutic strategies to overcome it.

Despite millennia of treating cancer [7], only in the last
150 years have we begun to characterize and address the chal-
lenges associated with it. In fact, Stephen Paget was the first to
describe that resistance to the surgical removal of cancer is
underpinned by early dissemination of tumor cells (reviewed
by Fidler and colleagues [8]). Sparked by these observations,
we experienced the first chemotherapy revolution in effort to
treat cancer as a systemic disease [9].

Genes, Mutations, and a Binary View of Resistance

After decades of experimenting with chemotherapy, motivat-
ed by Luria and Delbrück’s original observations in

Fig. 1 We present a short timeline of scientific discoveries, which have
impacted the course of our understanding of cancer therapy resistance.
The major turning points in our history are marked by a switch from

genetic mechanisms to epigenetic (non-genetic) mechanisms of resis-
tance, which represent a shift from binary resistance (i.e., on-off switch)
to a new field that studies a continuum of phenotypes, respectively

254 Curr Stem Cell Rep (2017) 3:253–259



microorganisms [10], researchers began to draw unique corre-
lations between Darwinian natural selection and mutations as
an underlying driver of therapy resistance [11, 12]. Indeed,
early observations suggested that tumor cell Bheterogeneity^
could support the expansion of lineages with unique, indepen-
dent drug resistance phenotypes. Goldie and Coldman used
these evidences in parallel with mathematical modeling to sup-
port the somatic mutation theory, which postulates that sponta-
neous mutations in tumor cells will drive acquired drug resis-
tance [13]. These lessons drove the discovery for gene ampli-
fication of multi-drug resistance protein 1 (MDR1), which me-
diates efflux of toxic agents from cancer cells [14], and
dihydrofolate reductase (DHFR), which results in metabolic
inactivation of therapeutic agents [15]. These findings were
penultimate to a new revolution in cancer treatment, paving
the way for Btargeted^ drugs, which attack specific proteins
as the drivers of resistance. Indeed, a pivotal discovery in this
era is marked by the introduction of Gleevec, an inhibitor of the
BCR-Abl gene translocation [16]. Despite early success, re-
searchers and clinicians quickly realized challenges to targeted
therapy due to emerging evidence for secondary, acquired mu-
tations [17]. In these original studies, resistance was perceived
as an Bon-off^ switch, in which single mutations and drivers of
tumorigenicity could be scuttled to improve outcome.

Epigenetics and a more Fluidic View of Resistance

A surprising finding in the past several decades is that of
mutation-less resistance, which can even occur while a
patient is being treated [18, 19]. These clinical data have
opened the door to new hypotheses that support a greater
continuum of phenotypic rather than genetic mechanisms
of resistance. A critical discovery in this new era was
made by Hirschmann and colleagues who elucidated the
cancer stem cell (CSC) hypothesis in drug resistance [20].
The notion that a pervasive, varying phenotypic state
could drive resistance led to robust drug screening efforts
[21], and the subsequent observation that feedback acti-
vation of oncogenes [22], and epigenetic modifications
(i.e., DNA methylation) permit inherently resistant pheno-
types [23•]. These early evidence into the phenotype-
driven model has been challenged; however, most recent-
ly by Gupta and colleagues who applied mathematical
modeling to demonstrate that cell plasticity and reversibil-
ity can create a CSC-like state in stochastic fashion [24].
Even more recently, Huang et al. and Goldman et al. dis-
covered that therapy itself can induce an Badaptive^ resis-
tance, a Lamarckian rather than Darwinian mechanism,
controlled by cell plasticity [25, 26]. Interestingly, using
a strategy that incorporated a mathematical approach to
simulate therapy-induced phenotypic shifting, it was de-
termined that adaptive resistance can be driven by a pop-
ulation of non-CSC [25].

Bridging Biology with Mathematics

Starting at the Single-Cell Level

The outdated belief that cancer is a disease of single cells has
recently taken center stage at the debate of drug resistance. For
example, the cancer stem cell (CSC) theory, originally intro-
duced more than a decade ago [20], takes the view that a
minor population of cells within a tumor harbor inherently
malignant advantages such as drug efflux, low cell cycling,
and high degree of plasticity, and is also considered the subset
of cells responsible for both drug resistance and tumor re-
growth following unsuccessful therapy [27–29]. However,
emerging tools such as bioinformatics and computational bi-
ology are revealing new clues for the role of CSC in drug
resistance. For example, in a retrospective study by Kern
and Shibata, it was revealed that drug resistance is essentially
a numerical challenge. Using an unbiased approach that sys-
tematically analyzes the rate of resistance with the relatively
minor population of CSC, the authors determined that it is a
mathematical impossibility for CSC, alone, to drive resistance
and relapse [30]. Indeed, such findings raise the question of
what criteria define the CSC state, and do these criteria need to
be expanded? Exhaustive efforts have been made to charac-
terize CSC based on cell surface glycoproteins such as CD44,
CD24, and CD133, metabolic proteins such as ALDH1, drug
efflux MDR1, and other MDR, and many other groups of
proteins that are dependent on tumor indication and stage
[31]. Despite these discrepancies, the notion that a CSC-like
state confers resistance is universally accepted [32].

Given the impossibility of studying cellular behavior in real
time under dynamic conditions, researchers have begun to
adopt computational approaches, which can simulate, predict,
and model the growth and response dynamics of single cells,
given parameters that are only loosely associated. For exam-
ple, Wichmann and Loeffler [33], as well as Ganguly and Puri
[34], developed a multi-compartment model for stem cells,
early and late progenitor cells, and mature cells, to study the
CSC hypothesis and the effects of chemotherapy [34] in the
context of brain tumor. Moreover, Turner et al. [35] used sto-
chastic and continuous models to study the behavior of brain
CSC and their response to treatment strategies. Several other
mathematical models have also been used to study dynamics
of stem cells in cancer initiation and progression, as well as the
treatment response and the evolution of drug resistance in
chronic myeloid leukemia (CML), see for example Michor
et al. [36]. In addition, the dynamics of stem cells has been
widely discussed in colorectal cancer modeling, see for exam-
ple Boman et al. and van Leeuwen et al. [37, 38]. Taken
together, these studies provide unique evidence for the behav-
ior of single-cell populations, which classically represent a
stem-like phenotype. However, these data do not take into
account that stem-like cells harbor inherent mechanisms that
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enable dynamic, and stochastic phenotypic variation, a prop-
erty that can enable different states of resistance to environ-
mental pressure.

Inherent Single-Cell Plasticity

The ability of cells to shift their phenotype, differentiate, and
de-differentiate in the absence of genetic mutations has be-
come known as Bcell plasticity.^ Indeed, this property, shared
by CSC and endogenous stem cells in healthy tissue, may be
observed morphologically or through phenotypic alterations
such as dynamic re-wiring of the intracellular signaling net-
works that govern states of differentiation [39]. Transient and
stochastic cell state transitions are often governed by changes
in gene expression that lead to different phenotypic states and
are linked to different states of DNA methylation, acetylation
of histones, and activity of histone methyltransferases,
demethylases, acetyltransferases, and deacetylases [40]. In
the context of cancer, these epigenetic properties can govern
drug resistance. For example, Sharma and colleagues identi-
fied a role for the lysine methyltransferase KDM5A in non-
small cell lung cancer as a driver of quiescence leading to
therapy evasion [23•].

Given the complexity of dynamic cell state transitions, and
the difficulty to study them using conventional experimental
techniques, numerous studies are now turning towards math-
ematical models as platforms for discovery. Turner and
Kohandel used a computational model to generalize the hier-
archical model of CSCs (stem cells, progenitor cells, and ma-
ture cells) to include the transition (dedifferentiation?) from
non-CSCs to CSCs [41]. Furthermore, Chaffer et al. and
Gupta et al. also developed non-hierarchical deterministic
models to quantitatively describe phenotype switching be-
tween subpopulations of cancer cells, reversibly creating a
CSC-like state in stochastic fashion [24, 42]. More specifical-
ly, in the context of cancer evolution, plasticity and dediffer-
entiation have been explored using mathematical models of
diffusion approximation [43] and replicator equations [44].

Therapy-Induced Single-Cell Plasticity

More recently, it has been proposed that CSC-like phenotypes
can develop under therapy pressure, which can potentially be
acquired in deterministic, rather than stochastic, fashion. For
example, Goldman and colleagues described, in several ther-
apeutic contexts, that non-Darwinian dynamics can drive a
temporary state of stemness, which is driven through a
CD44HiCD24Hi phenotypic state [25, 45, 46]. Importantly,
these authors show, using computational models that predict
phenotypic transitioning rates, that combinations of drugs giv-
en in temporal sequence improve the outcome of therapy [25].

While CSCmay represent an inherently Badvantaged^ pop-
ulation, emerging evidence now suggests that they may not

function as a single, static population. Indeed, recent studies
that rely on a mathematical approach, which seeks to simulate
cell phenotype dynamics, have determined that CSC may
switch behaviors as a consequence of stochasticity [24].
Such cell transitioning could explain variability in resistance,
and adapting new growth potentials to accommodate changes
to the microenvironment under drug pressure. This latter view
challenges the Bbinary^ hypothesis. Indeed, other evidence
using a multiscale model that comprises a set of stochastic
differential equations to describe pharmacokinetics, cellular
dynamics, and progression-free survival at the patient level,
while accounting for microenvironment adaptations including
those of the CSC-like state, has confirmed an integral role that
the entire population of interactive cancer cells contribute to
resistance [47]. This latest example highlights the emerging
view that resistance is perhaps not a phenomenon of only the
single-cell level. Rather, it may require an understanding of the
entire population.

Drug Resistance in the Context of the Entire Tumor
Population

At the cell population level, plasticity is usually understood as
adaptability and is also understood as Bfitness^ in a changing
environment. As such, it does not assumemechanisms relying
on mutations or epimutations, but it may be due to endoge-
nous local regulatory responses, e.g., of protein synthesis such
as the lac operon in Escherichia coli populations, that use it
for adaptation to metabolic changes in their environment. It
may also be due to more sophisticated mechanisms at the
single-cell level that are considered below, but the global re-
sult in a tumor is as such only assessed as preservation of the
cell population and its capacities of proliferation in a changing
environment.

The complexity of population-based dynamics requires the
novel integration of mathematics and computational simula-
tion, since experimental evidence alone is insufficient [48].
This is exemplified by the use of mathematical frameworks
that incorporate clonal interference and heterogeneity, which
interrogate growth behavior. For example, by estimating the
clone-specific exponential growth rates for each cell popula-
tion in different heterogeneous contexts, Marusyk et al. re-
cently determined that heterogeneity and drug resistance are
maintained in a cell non-autonomous fashion, integrating
population-based dynamics at the single-cell level [49].
Results from these studies in population dynamics might play
a substantial role in driving new therapeutic strategies. Indeed,
when considering drug resistance, others have determined that
transient evolution through non-Darwinian dynamics is oper-
ational, which directly opposes the established dogma of nat-
ural selection and somatic mutational evolution [26]. Another
fundamental question at the cell population level is—given a
phenotypic and/or spatial snapshot of a cancer cell population,
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can we reconstitute the history of its development? This
would, of course, have consequences at the single-cell level
as well. Some methods of phylogenetic studies can give such
answers with respect to a historical hierarchy of the develop-
ment of coexistent clones [50, 51], but these answers are
scarce.

The first heterogeneity that can be investigated is of a spa-
tial nature, and it has been investigated from the point of view
of successive genetic mutations giving rise by branching to
different clones in different regions (spatially isolated) of the
cancer cell population. It is thus of both genetic and spatial
nature, at least if one assumes, following Gause’s ecological
competitive exclusion principle [52], that genetically different
cancer clones do not mix, as only one will prevail in the long
term. The 2013 article fromGerlinger and colleagues [53] was
one of the first to document such spatial and genetic hetero-
geneity as exemplified by sampling tissue in different parts of
the same renal carcinoma and its metastatic sites. Predictable
as it seemed, this report showed, to the surprise of many, that
one single tumor biopsy was not enough to identify a tumor
and adapt a treatment to a supposed fixed genotype.

Biological Models to Study Therapy Resistance

Our current approach to experimentation is to develop biolog-
ical models, which can be exploited to study and predict ther-
apy response in true clinical scenarios. Indeed, pre-clinical
models that can be employed to study response and resistance
to therapy are penultimate to translating drugs into the clinic,
or understanding their clinical efficacy and utility. However,
one of the major challenges to study resistance is the lack of
available biological models that recapitulate the physiologic
human context. It is possible that in vitro 3D cultures could
partially fill the gap between conventional 2D in vitro testing
and animal models [54]. Emerging studies are harnessing co-
cultured organoids that comprise multiple components within
the microenvironment, including cells of the endothelium and
stroma with tumor cells. For example, Nyga et al. created a
biomimetic in vitro model of colorectal cancer that combines
tumor cells with connective stroma in 3D [55]. Emerging tools
are now making 3D organotypic models more simplified by
removing the need for extracellular matrices such as Matrigel
that can modify the signaling tumor-stroma contexture. For
example, nanofabricated scaffolds that enable complex
organoid structures can serve as a platform to interrogate the
effect of drugs in real time, using high-throughput screens
[56]. The question remains, however, how close can these
current strategies come to the complex, heterogeneous, and
individual complexity that exists within patients?

Despite the exceptional utility of in vitro and in vivo
models, the current paradigms fail to completely mimic the
complexity of the entire tumor ecosystem, which is extraordi-
narily dynamic and heterogeneous. Indeed, the recent

advances in immunotherapy and the necessity for a fully hu-
man model have continued to elude current biological strate-
gies. Addressing these limitations, more recent efforts are
challenging the simplicity of the binary view and are
harnessing the understanding that a continuum of phenotypes
predisposes the individual to resistance development. For ex-
ample, utilizing mathematical algorithms that employ ma-
chine learning technology provides a computational platform
to explain therapy response and resistance using 3D human
tumor explanted tissue, which maintains the native architec-
ture, heterogeneity, and immune context within the stroma
[57]. Not only has this complex model achieved the goal of
being derived entirely from human components, it simulta-
neously integrates mathematics to seamlessly describe the role
of the biological system and explains drug resistance in a
comprehensive manner. How can we leverage these technol-
ogies, what more can we do to develop a personalized ap-
proach to therapy that both informs and explains resistance
in the context of the heterogeneous microenvironment?
Many open-ended questions exist that require the use of both
math and biology.

Conclusions and Future Directions

It is clearer now, more than ever, that science needs an injec-
tion of novel experimentation to unmask the mechanisms of
drug resistance. Here, we have demonstrated, through emerg-
ing research, that the fastest route to discovery of novel phe-
nomena, and unmasking the reason for cancer therapy failure,
is the integration of both math and biology. From a purely
biological approach to more complex models that incorporate
the entire tumor ecosystem, it is increasingly clear that we
need to integrate scientific disciplines. How can math inform
biology, and how can we leverage our biological understand-
ing of drug resistance to inform computational approaches?
We are at an exciting inflection point for these two distinct, yet
synergistic scientific disciplines to emerge as a powerhouse of
discovery.
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